1. 167. Two Sum II - Input Array Is Sorted, 24/Jun/24 Topics : Array, Two Pointer, Binary Search could solve it in 17mi. It was typical type.
class Solution {
    public int[] twoSum(int[] numbers, int target) {
        int left = 0;
        int right = numbers.length - 1;
        int[] indices = new int[2];

        while (left < right) {
            // To reduce two sum, decrease right index. 
            if (numbers[left] + numbers[right] > target) right--;
            // To increase two sum, increase left index
            else if (numbers[left] + numbers[right] < target) left++;
            else {
                indices[0] = left + 1;
                indices[1] = right + 1;
                break;
            }
        }

        return indices;      
    }  
}

But simplest code is while (numbers[left]) + numbers[right] != targer). We don’t need while (left < right) because they ensure only one solution always.

Its constraint is SC must $O(1)$ So Binary Search also works. But its TC is $O(nlongn)$. While for loop(from 0 to len - 1), set a valuable another = target - numbers[i]. then check there is another on the range(from i+1 to len - 1)! So Binary Search occurs n times. It means TC is $O(nlongn)$.

  1. 11. Container With Most Water, 24/Jun/24 Topics : Array, Two Pointer, Greedy could solve it in 31mi using hints. My solution

Intuition

At first, I thought a wider x-axis is best, so I started with left(0) and right(len-1) indices. Then, I considered how to move these indices.

Initially, I thought about comparing height[left] with height[right] and moving the lower one towards the center. My reasoning was that moving the larger one would always result in a smaller area compared to the original configuration. However, I got stuck when considering the case where both heights were the same.

Approach

The hint helped me rethink the scenario of equal heights. I realized it doesn’t matter which index (left or right) gets fixed as long as one stays put. This is because neither (i+1, j) nor (i, j-1) can be potential solutions when h[i] == h[j]. The resulting area would always be smaller due to a smaller width and a maximum height that’s either equal to or lower than (h[i], h[j]). This concept applies similarly to the cases of (h[l] > h[r]) and (h[l] < h[r]). The key is to focus on identifying which configuration can be a potential solution or cannot be a potential solutuin!. Finally, I recognized that (i+1, j-1) also works when h[i] == h[j].

Complexity

  • Time complexity: $O(n)$
  • Space complexity: $O(1)$

Code

class Solution {
    public int maxArea(int[] height) {
        int left = 0;
        int right = height.length - 1;
        int water = 0;
        int maxWater = -1;

        while (left < right) {
            water = (right - left) * Math.min(height[left], height[right]); 
            maxWater = Math.max(maxWater, water);

            if (height[left] < height[right]) left++;
            else right--;
        }

        return maxWater;
    }
}
  1. 15. 3Sum, 25/Jun/24 Topics: Array, Two Pointers, Sorting couldn’t solve it within 30mi. My solution

Intuition

This problem needs three pointers. So if we set one index, then left 2 indices will be two pointer problem!
And two pointer need sorted array. This probelm we only focus it is all different. but don’t care what is index literally.
So we can sort nums!

Approach

i) Using Sorting and Set

then TC will be O(n2)O(n^2)O(n2). 10^6 is not to exceed time limit :)
But if we use ArrayList and check duplicate like this if(ans.contains(b) == false) ans.add(b).
TC of contains function is O(n). So overall TC will be O(n3)O(n^3)O(n3). so Time limit exceeded!
So we can use Set to avoid duplicate!

class Solution {
    public List<List<Integer>> threeSum(int[] nums) {
        List<List<Integer>> triplets = new ArrayList<>();
        Set<List<Integer>>  set = new HashSet<>();
        int twoSum = 0;

        Arrays.sort(nums);
        
        for(int i = 0; i < nums.length; i++) {
            twoSum = nums[i] * -1;
            // To avoid same combination of indices.
            int left = i + 1;
            int right = nums.length - 1;

            while (left < right) {
                if (nums[left] + nums[right] > twoSum) right--;
                else if (nums[left] + nums[right] < twoSum) left++;
                else {
                    // To avoid duplicate triplet!
                    set.add(Arrays.asList(nums[i], nums[left], nums[right]));    
                    right--;
                    left++;
                }
            }
        }
        
        triplets.addAll(set);
        return triplets;
    }
}

ii) Using Sorting only.

If don’t use the Set. We can just skip duplicate triplet using While and comparing. All 3 nums[i], nums[left], nums[right], if same value, just skip!
Much faster than using set.

class Solution {
    public List<List<Integer>> threeSum(int[] nums) {
        List<List<Integer>> triplets = new ArrayList<>();
        int twoSum = 0;

        Arrays.sort(nums);
        
        for(int i = 0; i < nums.length; i++) {
            twoSum = nums[i] * -1;
            // To avoid same combination of indices.
            int left = i + 1;
            int right = nums.length - 1;

            while (left < right) {    
                if (nums[left] + nums[right] > twoSum) right--;
                else if (nums[left] + nums[right] < twoSum) left++;
                else {
                    triplets.add(Arrays.asList(nums[i], nums[left], nums[right]));    
                    // To avoid duplicate triplets for nums[left, right]).
                    while (left < right && nums[left] == nums[left + 1]) left++;
                    while (left < right && nums[right] == nums[right - 1]) right--;
                    right--;
                    left++;
                }
            }
            // To avoid duplicate triplets for nums[i]
            while (i < nums.length - 1 && nums[i] == nums[i + 1]) i++;
        }

        return triplets;
    }
}
  1. 209. Minimum Size Subarray Sum, 26/Jun/24 Topics : Array, Binary Search, Sliding Window, Prefix Sum couldn’t solve it within 30mi. It was not that difficult but I was stuck at handling end index, and the timing when nums[end] is added. But it can be dealt with while (sum >= target) not if (sum > target)!!

i ) TC : $O(n)$

class Solution {
    public int minSubArrayLen(int target, int[] nums) {
        int minLen = Integer.MAX_VALUE;
        int sum = 0;
        int start = 0;
        int end = 0;

        while (end < nums.length) {
            sum += nums[end];
            end++;

            while (sum >= target) {
                minLen = Math.min(minLen, end - start);
                sum -= nums[start];
                start++;
            }
        }

        if (minLen == Integer.MAX_VALUE)
            return 0;
        else
            return minLen;
    }
}

ii) TC : $O(nlogn)$ As to NLogN solution, logN immediately reminds you of binary search. As you know, Binary search need ==sorted array==. But In this case, we cannot sort it. How does one get an ordered array then? Since all elements are positive, the cumulative sum must be strictly increasing. Then, a subarray sum can expressed as the difference between two cumulative sum. Hence, given a start index for the cumulative sum array, the other end index can be searched using binary search.

 private int solveNLogN(int target, int[] nums) {
        int[] sums = new int[nums.length + 1];
        // make prefix sum to get increasing order array.
        for (int i = 1; i < sums.length; i++) sums[i] = sums[i - 1] + nums[i - 1];
        int minLen = Integer.MAX_VALUE;
    
        for (int i = 0; i < sums.length; i++) {
	        // sum of subarray : if sum[end] - sum[i] > target
	        // so we have to find end index when sum[end] > target + sum[i]!
            int end = binarySearch(i + 1, sums.length - 1, sums[i] + target, sums);
            if (end == sums.length) break;
            if (end - i < minLen) minLen = end - i;
        }
        return minLen == Integer.MAX_VALUE ? 0 : minLen;
  1. 3. Longest Substring Without Repeating Characters, 26/Jun/24 Topics : Hash Table, String, Sliding Window couldn’t solve it within 50mi, because I couldn’t think that ==we have to update the map with the character’s index always! not only map.containsKey(a) is false==

Idea : using hashmap, check a character is contained or not.

class Solution {
    public int lengthOfLongestSubstring(String s) {
        HashMap<String, Integer> map = new HashMap<String, Integer>();
        char[] str = s.toCharArray();
        int ans = 0;
        int max = 0;
        int start = 0;
        int end = 0;
        int i = 0;

        while (end < str.length) {
             if (map.containsKey(String.valueOf(str[end])) == false) {
                map.put(String.valueOf(str[end]), end);
                max++;
                ans = Math.max(ans, max);
            }
            else {
                i = map.get(String.valueOf(str[end]));
                // Check str[i] is including in subarray or not!
                if (i < start) {
                    // Update str[end] index within subarray.
                    map.put(String.valueOf(str[end]), end);
                    max++;
                    ans = Math.max(ans, max);
                }
                else {                
                    start = i + 1;
                    max = end - start + 1;
                    // This is that line I couldn't come up with...
                    // must update index always!
                    map.put(String.valueOf(str[end]), end);
                }
            }

            end++;
        }
        
        return ans;
    }
}

And this is not good cuz ans is not needed! maxLen = Math.max(maxLen, end - right + 1) And also HashMap<Character, Integer> is valid. so char[] str is not necessary! s.charAt(i) is good