Actually matrix is 2D arrays!
Graph
Unweighted Graph can be represented by Matrix or List.
i) By Matrix
Just fill the all elements by 0
, and set 1
if the number of vertex is connected by others.
This is not appreciable bc it ends up taking $O(n^2)$ space. So only for small graph.
ii) By adjacency List
ArrayList<ArrayList<>>
Space Complexity : $O(2n)$ if graph is undirected.
Weighted Graph
also can be represented by Matrix or List
i) By Matrix
Just fill the all elements by 0 or -ve
, and set weight
if the number of vertex is connected by others.
This is not appreciable bc it ends up taking $O(n^2)$ space. So only for small graph.
ii) By adjacency List
ArrayList<ArrayList<Pair>>
We just use Pair for {connected node, weigth}. The other are same with unweight graph.
iii) By HashTable
If the node’s name is not number. we can’t use a name as index of List. So for efficiency, we have to use HashMap<String, HashMap<String, Integer>>
[[2024-06-27-Matrix&Graph#^9ac034| directed weight graph]]
Topological Sort in directed Graph
A linear ordering of its vertices such that for every directed edge(u, v) from vertex u to vertex v, u comes before v in the ordering In a directed graph, There can be so many different(multiple) topological sort linear order.
i) By DFS
TC : $O(V+E)$
We need a Set
and a Stack
.
Set has all the visited vertices.
Stack has all the vertices in topological sorted order. If we visited all child(directed) of a vertex, then we push that vertex on the Stack
.
public Deque<<Vertex<T>> topSort(Graph graph) {
Deque<Vertex<T>> stack = new ArrayDeque<>();
Set<Vertex<T>> visited = new HashSet<>();
for (Vertex<T> vertex : graph.getAllVertex()) {
if (visited.contains(vertex)) continue;
topSortUtil(vertex, stack, visited);
}
return stack;
}
private void topSortUtil(Vertex<T> vertex, Deque<Vertex<T>> stack, Set<Vertex> visited) {
for(Vertex<T> childVertex : vertex.getAdjacentVetexes()) {
if(visited.contains(childVertex)) continue;
topSortUtil(childVertex, stack, visited);
}
stack.offerFirst(vertex);
}
ii) By BFS (Kahn’s Algorithm)
Kahn’s Algorithm is about Dependency. TC : $O(V+E)$ ^42192e
Repeatedly remove nodes without any dependencies from the graph and Add them to the topological ordering. we repeat removing nodes without dependencies from the graph until all nodes are processed or a cycle is discovered.
1) Begin by counting the incoming degree of each node 2) Maintain a queue of all nodes with no incoming edges 3) Remove a node from queue, and decrease the degree of all affected nodes. -> Maintain removed node for topological order. 1) Add any new nodes which an incoming degree of 0 to the queue. 5) Repeat Phase 3, 4
// `g` is a DAG represented as an adjacency list
function topSort(g) :
n = g.size()
// size n
in_degree - [0, 0, ..., 0]
// count incoming degree
for (i = 0; i < n; i++) :
for (to in g[i]):
in_degree[to] += 1;
// `q` always contains the set nodes with no incoming edges.
q = empty
for (i=0; i < n; i++):
if(in_degree[i] == 0):
q.add(i)
index = 0
// size n
order = [0, 0, ..., 0]
while (!.isEmpty()):
at = q.dequeue();
order[index++] = at
for (to in g[at]):
in_degree[to] -= 1
if(in_degree[to] == 0):
q.add(to)
if index != n:
// graph contains a cycle
return null
return order
- 36. Valid Sudoku, 27/Jun/24 Topics : Arrays, Hash Table, Matrix My solution
We can check dup on 9*3 times (row, col, box) But using nested loop 3 times is terrible to look. Come up with How to solve it using only one nested loop?
We have to think about ”%” and ”/”. These two operators can be helpful for matrix traversal problems.
i ) Using 2D Arrays. (Much faster than ii) method)
class Solution {
public boolean isValidSudoku(char[][] board) {
// 1D means check times, 2D means dup.
int[][] row = new int[9][9];
int[][] col = new int[9][9];
int[][] box = new int[9][9];
for (int i = 0; i < board.length; i++) {
for (int j = 0; j < board[0].length; j++) {
if (board[i][j] == '.') continue;
// Convert char to int
int val = Character.getNumericValue(board[i][j]);
if (row[i][val - 1] == 0) row[i][val - 1] = 1;
else return false;
if (col[j][val - 1] == 0) col[j][val - 1] = 1;
else return false;
if (box[i/3 * 3 + j/3][val - 1] == 0) box[i/3 * 3 + j/3][val - 1] = 1;
else return false;
}
}
return true;
}
}
It is really hard and essential to think about box[i/3 * 3 + j/3]
.
box order is like below.
0 1 2 3 4 5 6 7 8
i
index can be used to change row of boxes, and j
index can be used to change col of boxes!
ii) Using HashSet<String>
Actually ii) method is also same idea with box[i/3 * 3 + j/3]
.
class Solution {
public boolean isValidSudoku(char[][] board) {
HashSet<String> set = new HashSet<String>();
for (int row = 0; row < board.length; row++) {
for (int col = 0; col < board[1].length; col++) {
char val = board[row][col];
if (val == '.') continue;
if ( !set.add(val + "in row " + row) ||
!set.add(val + "in col " + col) ||
!set.add(val + "in box " + row/3 * 3 + col/3)) return false;
}
}
return true;
}
}
So essence of this problem is “Can you make box index right?” box[i/3 * 3 + j/3]
- 54. Spiral Matrix, 27/Jun/24 Topics : Array, Matrix, Simulation couldn’t solve it with 40mi because of the condition when have to stop.
The essence of this problem is also get indices for travel matrix!
Well for some problems, the best way really is to come up with some algorithms for simulation. Basically, you need to simulate what the problem asks us to do. We go boundary by boundary and move inwards. So ==we have to keep track of boundary!== To present boundary of square needs 4 valuables!
We can think like this.
(fixed first row, col until last col) // after this, increase first row by 1 (fixed last col, row until last row) // decrease last col by 1 (fixed last row, col until first col) // decrease last row by 1 (fixed first col, row until first row) // increase first col by 1
But the most important thing is knowing the time when we have to stop! That is really tricky. We can use size of answer list!
class Solution {
public List<Integer> spiralOrder(int[][] matrix) {
List<Integer> spiral = new ArrayList<Integer>();
int firstRow = 0, firstCol = 0;
int lastRow = matrix.length - 1, lastCol = matrix[0].length - 1;
int m = matrix.length, n = matrix[0].length;
while (spiral.size() < n*m) {
for (int col = firstCol; col <= lastCol && spiral.size() < n*m; col++) {
spiral.add(matrix[firstRow][col]);
}
firstRow++;
for (int row = firstRow; row <= lastRow && spiral.size() < n*m; row++) {
spiral.add(matrix[row][lastCol]);
}
lastCol--;
for (int col = lastCol; col >= firstCol && spiral.size() < n*m; col--) {
spiral.add(matrix[lastRow][col]);
}
lastRow--;
for (int row = lastRow; row >= firstRow && spiral.size() < n*m; row--) {
spiral.add(matrix[row][firstCol]);
}
firstCol++;
}
return spiral;
}
}
- 48. Rotate Image, 27/Jun/24 Topics : Array, Math, Matrix
선형대수학(벡터, 행렬 등) ==This problem is related to linear algebra(vector, matrix etc.)== Def FAANG likes (Math + Array) category!
Orininal
1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16
After rotate by 90 degrees.
- - 5 1
- - 6 2
- - 7 3
- - 8 4
We can know it is related to transport(switches row and coloumn, in other words, flips a matrix over its diagonal)!
But after transport matrix is like below.
1 5 - -
2 6 - -
3 7 - -
4 8 - -
Its diagonal indices is not changed!
Then we can compare between after rotate by 90 degrees and after transport. It is flips a matrix over its vertical line! it means reverse every row!
class Solution {
public void rotate(int[][] matrix) {
int n = matrix.length;
// for swap
int temp = 0;
// 1. Transport matrix
for (int i = 0; i < n; i++) {
for (int j = i + 1; j < n; j++) {
temp = matrix[j][i];
matrix[j][i] = matrix[i][j];
matrix[i][j] = temp;
}
}
// 2. Reverse every row.
for (int i = 0; i < n; i++) {
int left = 0;
int right = n - 1;
while (left < right) {
temp = matrix[i][left];
matrix[i][left] = matrix[i][right];
matrix[i][right] = temp;
left++;
right--;
}
}
}
}
- 73. Set Matrix Zeroes, 28/Jun/24
Topics : Array, Hash Table, Matrix
solved it in 19mi using Hint and HashSet…
But it was not best solution cuz it use O(m + n) space not constant!
My solution
Intuition
The impotant thing is recording its row and column indices which have to changed to “zero”!
Using another matrix is O(mn) space. so not that good.
How about recording only row and col respectively, not pair(row,col)?.
We don’t need to record all pairs. we can focus on entrie row and column to zero
s.
So we can use Set for row and col respectively.
i) Using Set (SC : O(m+n))
class Solution {
public void setZeroes(int[][] matrix) {
int m = matrix.length;
int n = matrix[0].length;
HashSet<Integer> rowZero = new HashSet<Integer>();
HashSet<Integer> colZero = new HashSet<Integer>();
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
if (matrix[i][j] == 0) {
rowZero.add(i);
colZero.add(j);
}
}
}
// respectively
for (int row : rowZero) {
for (int col = 0; col < n; col++) matrix[row][col] = 0;
}
for (int col : colZero) {
for (int row = 0; row < m; row++) matrix[row][col] = 0;
}
// integrily same as above
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
if (rowZero.contains(i) || colZero.contains(j)) {
matrix[i][j] = 0;
}
}
}
}
}
How we can solve it on constant space?
It is def impossible just using some valuables.
Then we must use array but constant space! How?!
Use just given matrix as a record!
ii) Using given matrix itself (SC : O(1))
We can use a first row and a first column as a record!
But matrix[0][0] cannot represent row and col respectively!
So we have to use 2 valuables to keep track of first row and first column. (firstRow, firstCol).
After recording, the matrix is like below.
0 0 0 0 1 2 5
0
0
7
8
When using this record, if for loop start index 0, it will ruin our record!
Therefore we have to start from last index to first!
class Solution {
public void setZeroes(int[][] matrix) {
int m = matrix.length, n = matrix[0].length;
Boolean firstRow = false, firstCol = false;
// 1. Record
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
if (matrix[i][j] == 0) {
if (i == 0) firstRow = true;
if (j == 0) firstCol = true;
matrix[i][0] = 0;
matrix[0][j] = 0;
}
}
}
// 2. Using record, Set zeros except for firstRow, firstCol
for (int i = m - 1; i > 0; i--) {
for (int j = n - 1; j > 0; j--) {
if (matrix[i][0] == 0 || matrix[0][j] == 0 ) matrix[i][j] = 0;
}
}
if (firstRow == true) {
for (int col = 0; col < n; col++) matrix[0][col] = 0;
}
if (firstCol == true) {
for (int row = 0; row < m; row++) matrix[row][0] = 0;
}
}
}
- 289. Game of Life, 28/Jun/24 Topics : Array, Matrix, Simulation could solve it in 25mi. but using O$(m*n)$ space… My solution
Rules
- live -> dead if live neighbors < 2
- live -> live if live neighbors == 2 or 3
- live -> dead if live neighbors > 3
- dead -> live if live neighbors == 3
live nei cells | next state |
---|---|
3 | live |
more than 3 | dead |
2 | live -> live, dead -> dead // In other words it is same! |
else | dead |
i) Using another matrix for counting live neighbor cells. (SC : $O(m*n)$)
int m = board.length;
int n = board[0].length;
int[][] liveCnt = new int[m][n];
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
for (int row = - 1; row < 2; row++) {
for (int col = -1; col < 2; col++) {
if (i + row >= 0 && i + row < m && j + col >= 0 && j + col < n) {
if (i + row == i && j + col == j) continue;
if (board[i + row][j + col] == 1) liveCnt[i][j] += 1;
}
}
}
}
}
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
if (liveCnt[i][j] > 3) {
board[i][j] = 0;
}
else if ([i][j] == 3) {
board[liveCnti][j] = 1;
}
else if (liveCnt[i][j] == 2) continue;
else board[i][j] = 0;
}
}
==How to keep track of original state after changing to next state?== That is the key concern here.
ii) Using symbols that represent the original state and next state. (SC : $O(1)$)
Original | Next | Symbol |
---|---|---|
0 | 0 | 0 |
0 | 1 | 2 // if symbol of 01 is 1, then we can’t tell its original state or symbol. |
1 | 0 | 1 |
1 | 1 | 3 |
class Solution {
public void gameOfLife(int[][] board) {
int m = board.length;
int n = board[0].length;
// Mark symbols
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
markSymbol(i, j, board, m, n);
}
}
// Return the next state using symbols
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
// else if 안하고 if 2개 썼다가 망할뻔;; 생각이 안났어ㅠㅠ
if (board[i][j] == 1) board[i][j] = 0;
else if (board[i][j] == 2 || board[i][j] == 3) board[i][j] = 1;
}
}
}
public void markSymbol(int i, int j, int[][] board, int m, int n) {
int[] dr = new int[] {-1, -1, -1, 0, 0, 1, 1, 1};
int[] dc = new int[] {-1, 0, 1, -1, 1, -1, 0, 1};
int liveCnt = 0;
for (int d = 0; d < dr.length; d++) {
int row = i + dr[d];
int col = j + dc[d];
if (row >= 0 && row < m && col >= 0 && col < n) {
if (board[row][col] == 1 || board[row][col] == 3) liveCnt++;
}
}
if (board[i][j] == 1) {
// except for this conditon, it will die, so symbol is still 1.
if (liveCnt == 2 || liveCnt == 3) board[i][j] = 3;
}
else {
// only on this condition, it become a live cell. so symbole is 2.
if (liveCnt == 3) board[i][j] = 2;
}
}
}
- 200. Number of Islands, 13/Jul/24 Topics : #Array , #DFS , #BFS , #UnionFind, #Matrix could solve it 15mi bc it was so boring to me… I’ve already solved this type in so many times!
public int numIslands(char[][] grid) {
int island = 0;
int m = grid.length, n = grid[0].length;
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
if (grid[i][j] == '1') {
dfs(grid, i, j);
island++;
}
}
}
return island;
}
private void dfs(char[][] grid, int row, int col) {
grid[row][col] = '2';
int[] dx = {-1, 0, 1, 0};
int[] dy = {0, 1, 0, -1};
for (int i = 0; i < dx.length; i++) {
int x = row + dx[i];
int y = col + dy[i];
if (x >= 0 && x < grid.length && y >= 0 && y < grid[0].length) {
if (grid[x][y] == '1') {
dfs(grid, x , y);
}
}
}
}
My code is like BFS. So can change for using base code.
private void DFSMarking(char[][] grid, int i, int j) {
// in DFS, BASE CODE SO IMPORTANT!!!!!
if (i < 0 || j < 0 || i >= n || j >= m || grid[i][j] != '1') return;
grid[i][j] = '0';
DFSMarking(grid, i + 1, j);
DFSMarking(grid, i - 1, j);
DFSMarking(grid, i, j + 1);
DFSMarking(grid, i, j - 1);
}
- 130. Surrounded Regions, 13/Jul/24
Topics: #Array , #DFS , #BFS , #UnionFind, #Matrix
could solve it 35mi without any hint! haha feel good~ but I spend time a lot fixing this
if (board[i][j] == 's') board[i][j] = 'O'; else if (board[i][j] == 'O') board[i][j] = 'X';
I have to change order of
if
orif
toelse if
. And for representing edge of board usingi
andj
.
Just Think reversely.
all region of edge will be same!
And the other all region(‘O’) will be changed to X
;
Phase 1 : “Save” every O-region touching the border, changing its cells to ‘s’. Phase 2 : Change every ‘s’ to ‘O’ and everything else to ‘X’.
public void solve(char[][] board) {
int m = board.length, n = board[0].length;
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
// for every edge
if(i == 0 || i == m - 1 || j == 0 || j == n - 1) {
if (board[i][j] == 'O') dfs(board, i, j);
}
}
}
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
if (board[i][j] == 's') board[i][j] = 'O';
else if (board[i][j] == 'O') board[i][j] = 'X';
}
}
}
private void dfs(char[][] board, int i, int j) {
if (i < 0 || i >= board.length || j < 0 || j >= board[0].length) return;
// save that region bc it is on the edge of the board.
if(board[i][j] == 'O') {
board[i][j] = 's';
dfs(board, i - 1, j);
dfs(board, i, j + 1);
dfs(board, i + 1, j);
dfs(board, i, j - 1);
}
}
ii) These count island problems can be solved by Union Find.
The idea is If we connect all ‘O’ nodes on the boundary to a dummy node(dummy element), and then connect each ‘O’ nodes to its neighbour ‘O’ nodes, then we can tell directly whether a ‘O’ node is captured by checking whether it is connected to the dummy node(parent is dummy) or not. The important things are using 1D parent array. So we have to convert 2D graph to 1D Array or reverse
This code convert 2D graph to 1D array(for parent array)
class Solution {
int[] parent;
public void solve(char[][] board) {
int n = board.length;
int m = board[0].length;
// we have n * m elements and one dummy node
int size = n * m + 1;
parent = new int[size];
// initialize the parent array
for(int i=0;i<size;i++) parent[i] = i;
// Loop over the board
for(int i=0;i<n;i++){
for(int j=0;j<m;j++){
// if we are in the first, last row or col and
// the cell = O, union this cell with the dummy node
if((j == m - 1 || i == n - 1 || j == 0 || i == 0)
&& board[i][j] == 'O'){
union(size - 1, i * m + j);
}
// if there are any two adjacent Os union them
if(i < n - 1 && board[i][j] == 'O' && board[i + 1][j] == 'O'){
union((i+1)*m + j, i * m+ j);
}
if(j < m - 1 && board[i][j] == 'O' && board[i][j + 1] == 'O'){
union(i * m + j, i * m + j + 1);
}
}
}
// Get the parent of the dummy node to compare it with Os parents
int flag = find(size - 1);
for(int i=0;i<n;i++){
for(int j=0;j<m;j++){
// If they are not the same, this O is surrounded by Xs
if(board[i][j] == 'O' && find(i * m + j) != flag ) {
board[i][j] = 'X';
}
}
}
return;
}
public boolean union(int x, int y){
int xp = find(x);
int yp = find(y);
if(xp == yp) return false;
parent[yp] = xp;
return true;
}
public int find(int x){
if(parent[x] != x) parent[x] = find(parent[x]);
return parent[x];
}
}
- 133. Clone Graph, 14/Jul/24 Topics: #HashTable , #DFS , #BFS , #Graph could solve it 1h without topics and any hint!, but I just took 17mi only to understand the question!
We don’t have any pointer. We just know only 1st node and the neighbors of 1st node. So for all node, def we have to make each copy of node in a way like a chain!
So I just started to write for
loop for 1st(given) node. And after finish that, I thought I need recursion for all of neighbors! And to prevent eternal call, I wanna check to whether i
th node is already made or not. So I want to choose HashMap
. so we will travel all around our adjcant using DFS not BFS And ta dah~
/*
// Definition for a Node.
class Node {
public int val;
public List<Node> neighbors;
public Node() {
val = 0;
neighbors = new ArrayList<Node>();
}
public Node(int _val) {
val = _val;
neighbors = new ArrayList<Node>();
}
public Node(int _val, ArrayList<Node> _neighbors) {
val = _val;
neighbors = _neighbors;
}
}
*/
class Solution {
public Node cloneGraph(Node node) {
// declaring map, to check whwther we have a copy of node or not and also to store copy
HashMap<Integer, Node> hasNode = new HashMap<>();
if (node == null) return null;
return deepcopy(node, 1, hasNode);
}
private Node deepcopy(Node original, int val, HashMap<Integer, Node> hasNode) {
Node deepcopy = new Node(val, new ArrayList<Node>());
hasNode.put(val, deepcopy);
for (int i = 0; i < original.neighbors.size(); i++) {
Node adj = original.neighbors.get(i);
Node copy;
if (!hasNode.containsKey(adj.val)) copy = deepcopy(adj, adj.val, hasNode);
else copy = hasNode.get(adj.val);
deepcopy.neighbors.add(copy);
}
return deepcopy;
}
}
more compact DFSst code(using base line!)
class Solution {
public HashMap<Integer, Node> map = new HashMap<>();
public Node cloneGraph(Node node) {
return clone(node);
}
public Node clone(Node node) {
if (node == null) return null;
if (map.containsKey(node.val))
return map.get(node.val);
Node newNode = new Node(node.val, new ArrayList<Node>());
map.put(newNode.val, newNode);
for (Node neighbor : node.neighbors)
newNode.neighbors.add(clone(neighbor));
return newNode;
}
}
can be solved by BFS using queue
It is similar with DFS but in different way. Bc in DFS way, The 1st node is complete at last after other nodes was made. But in BFS, The 1st node is complete at first than other nodes. While first node was being made, the neighbors node has just value and empty List. So we have to store original node
and copy node
both and connect them..
public Node cloneGraph(Node node) {
// <original, copy>
HashMap<Node, Node> hasNode = new HashMap<>();
if (node == null) return null;
Node clone = new Node(1, new ArrayList<>());
// input only original nodes in queue.
ArrayDeque<Node> q = new ArrayDeque<>();
hasNode.put(node, clone);
q.add(node);
while(!q.isEmpty()) {
// for each original node
Node original = q.removeFirst();
for (Node adj : original.neighbors) {
if (!hasNode.containsKey(adj)) {
hasNode.put(adj, new Node(adj.val, new ArrayList<>()));
q.add(adj);
}
hasNode.get(original).neighbors.add(hasNode.get(adj));
}
}
return clone;
}
- 399. Evaluate Division, 15/July/24
Topics : #Array, #String, #DFS, #BFS, #UnionFind , #Graph , #ShortestPath
could solve it 2h using hint… OMG!!!!!!
The Idea was simple. We must recognize this problem as a graph problem.
<- reciprocal(역수) -> multiple a -> b -> c -> d ^9ac034
And graph is like a : (b, 2) b : (a, 1/2), (c, 3) c : (b, 1/3)
We simply find a path using DFS from node a
to node c
and multiply the weights of edges passed, i.e. 2 * 3 = 6
.
So for that I have to use HashMap
But after coming up with this idea, I took two hours to implement graph
and find()
!!!!
class Solution {
public double[] calcEquation(List<List<String>> equations, double[] values, List<List<String>> queries) {
// Store (src, weight)
HashMap<String, HashMap<String, Double>> graph = new HashMap<>();
double[] ans = new double[queries.size()];
// make a weighted graph.
for(int i = 0; i < values.length; i ++){
String src = equations.get(i).get(0);
String dest = equations.get(i).get(1);
HashMap<String, Double> adjs;
// source -> destination
if (!graph.containsKey(src)) {
adjs = new HashMap<>();
graph.put(src, adjs);
}
adjs = graph.get(src);
adjs.put(dest, values[i]);
// destination -> source is reciprocal
if (!graph.containsKey(dest)) {
adjs = new HashMap<>();
graph.put(dest, adjs);
}
adjs = graph.get(dest);
adjs.put(src, 1.0 / values[i]);
}
for (int i = 0; i < queries.size(); i++) {
HashSet<String> visited = new HashSet<String>();
visited.add(queries.get(i).get(0));
ans[i] = find(queries.get(i).get(0), queries.get(i).get(1), visited, graph);
}
return ans;
}
private double find(String src, String dest, HashSet<String> visited,HashMap<String, HashMap<String, Double>> graph) {
if (!graph.containsKey(src)) return -1.0;
if (src.equals(dest) == true) return 1.0;
if (graph.get(src).containsKey(dest)) return graph.get(src).get(dest);
for (Map.Entry<String, Double> adj : graph.get(src).entrySet()) {
if (visited.contains(adj.getKey())) continue;
visited.add(adj.getKey());
double val = find(adj.getKey(), dest, visited, graph);
visited.remove(adj.getKey());
// Oh How Can I think this case? haha
if (val != -1.0) return adj.getValue() * val;
}
return -1.0;
}
}
The visited.add
code can be just add before for
loop start in find()
. And don’t need to remove! BECAUSE IF WE SEARCH A CERTAIN NODE(NEIGHBOUR) WE DON’T NEED TO SEARCH AGAIN! IT IS NOT PERMUTAION OR COMBINATION PROBLEM!!!!!!
Think about, a - > b -> c.
1) a -> c
2) a -> b -> c
Two weight is SAME. So we if we already visit c
node and don’t find destination. we don’t have to visit b->c
! It is not for visiting all possible route. Oh It was so confused to me…
And Just make buildGraph()
and Use `putIfAbsent
And acually [a, a]
case also don’t have to add exceptional code bc a - something - a
must exist.
This is other’s solution.
public double[] calcEquation(String[][] equations, double[] values, String[][] queries) {
/* Build graph. */
Map<String, Map<String, Double>> graph = buildGraph(equations, values);
double[] result = new double[queries.length];
for (int i = 0; i < queries.length; i++) {
result[i] = getPathWeight(queries[i][0], queries[i][1], new HashSet<>(), graph);
}
return result;
}
private double getPathWeight(String start, String end, Set<String> visited, Map<String, Map<String, Double>> graph) {
/* Rejection case. */
if (!graph.containsKey(start))
return -1.0;
/* Accepting case. */
if (graph.get(start).containsKey(end))
return graph.get(start).get(end);
visited.add(start);
for (Map.Entry<String, Double> neighbour : graph.get(start).entrySet()) {
if (!visited.contains(neighbour.getKey())) {
double productWeight = getPathWeight(neighbour.getKey(), end, visited, graph);
if (productWeight != -1.0)
return neighbour.getValue() * productWeight;
}
}
return -1.0;
}
private Map<String, Map<String, Double>> buildGraph(String[][] equations, double[] values) {
Map<String, Map<String, Double>> graph = new HashMap<>();
String u, v;
for (int i = 0; i < equations.length; i++) {
u = equations[i][0];
v = equations[i][1];
graph.putIfAbsent(u, new HashMap<>());
graph.get(u).put(v, values[i]);
graph.putIfAbsent(v, new HashMap<>());
graph.get(v).put(u, 1 / values[i]);
}
return graph;
}
It can be also solved by BFS. But in Java, we have to make Pair class…
Wow… Floyd Warshall method…
This method is pre-caching all the possible ways. But DFS and BFS methods is ad-hoc for each queries. So If queries is so much big, this way is better than DFS.
def calcEquation(self, equations, values, queries):
quot = collections.defaultdict(dict)
for (num, den), val in zip(equations, values):
quot[num][num] = quot[den][den] = 1.0
quot[num][den] = val
quot[den][num] = 1 / val
for k in quot:
for i in quot[k]:
for j in quot[k]:
quot[i][j] = quot[i][k] * quot[k][j]
return [quot[num].get(den, -1.0) for num, den in queries]
By Union-Find
skip…
- 207. Course Schedule, 15/Jul/24 Topics: #DFS , #BFS , #Graph , #TopologicalSort could solve it 57mi, But So slow, and memory consume is so bad. Bc I don’t know what is Topological Sort! By hints, this problem is typical Topological Sort problem.
union-find? nono… [a, b], [a, c] if above case, who is parent of a? b? or c?
HashMap<Integer, HaseSet>
0 -> prerequisites.
1 -> prerequisites.
3 -> prerequisites.
(reverse also. just add Integer, not hashSet)
prerequisites. ->
prerequisites. ->
after make graph. for (graph) { if (a class can be taken?) total++; }
My first idea is every lecture, Think about Is it possible or not?
So if a cycle is founded in a certain lecture, we can return false
. (Actually my code did total--
. But it can return just false
if one cycle is founded)
we have to think about this case also.
0 -> 2 1 -> 0 2 -> 1
class Solution {
public boolean canFinish(int numCourses, int[][] prerequisites) {
// <course, set(prerequisites)>
HashMap<Integer, HashSet<Integer>> graph = new HashMap<>();
int total = numCourses;
// build a directed graph.
for (int[] course : prerequisites) {
int lecture = course[0];
int pre = course[1];
graph.putIfAbsent(lecture, new HashSet<>());
graph.get(lecture).add(pre);
graph.putIfAbsent(pre, new HashSet<>());
}
for (int course : graph.keySet()) {
if (isPossible(course, course, new HashSet<>(), graph) == false) total--;
}
return (total == numCourses) ? true : false;
}
private boolean isPossible(int src, int target, HashSet<Integer> visited, HashMap<Integer, HashSet<Integer>> graph) {
if (graph.get(src).contains(target)) return false;
visited.add(src);
for (int pre : graph.get(src)) {
if (visited.contains(pre)) continue;
if (isPossible(pre, target, visited, graph) == false) return false;
}
return true;
}
}
Using BFS Topological Sort (Kahn’s algorithm)
[[2024-06-27-Matrix&Graph#^42192e| Kanh’s algorithm]]
ArrayList[] graph = new ArrayList[numCourses];
Oh it means make a array having ArrayList as elements. It is more good than ArrayList<ArrayList<Integer>>
public boolean canFinish(int numCourses, int[][] prerequisites) {
ArrayDeque<Integer> q = new ArrayDeque<>();
int[] inDegree = new int[numCourses];
Arrays.fill(inDegree, 0);
ArrayList<ArrayList<Integer>> graph = new ArrayList<>();
for (int i = 0; i < numCourses; i++) graph.add(new ArrayList<>());
// build a directed graph
for (int[] course : prerequisites) {
int lecture = course[0];
int pre = course[1];
graph.get(pre).add(lecture);
}
// count incoming degree of all vertexes.
for (ArrayList<Integer> pre : graph) {
for (int lecture : pre) {
inDegree[lecture] += 1;
}
}
// Add all lecture if its inDegree is `0` to queue.
for (int i = 0; i < numCourses; i++) {
if (inDegree[i] == 0) q.addLast(i);
}
// find a cycle!
int cnt = 0;
while (!q.isEmpty()) {
int pre = q.removeFirst();
cnt++;
for (int post : graph.get(pre)) {
inDegree[post] -= 1;
if (inDegree[post] == 0) q.addLast(post);
}
}
return cnt == numCourses;
}
Using DFS / Detect Cycle in Directed Graph Algorithm
Use white set (unvisited) , gray set (visiting, same recursion call), black set(visited)
If all the vertices of white set have been moved to black set, it means that there is no cycle in graph.
in below code, We don’t use gray set, only use a visited(boolean array sized n
). So if visited[course] is true, it means that course in gray set! And if we met that course in same recursion call(visited[course] is true). it means a cycle!
public boolean canFinish(int numCourses, int[][] prerequisites) {
ArrayList[] graph = new ArrayList[numCourses];
for(int i=0;i<numCourses;i++)
graph[i] = new ArrayList();
boolean[] visited = new boolean[numCourses];
for(int i=0; i<prerequisites.length;i++){
graph[prerequisites[i][1]].add(prerequisites[i][0]);
}
for(int i=0; i<numCourses; i++){
if(!dfs(graph,visited,i))
return false;
}
return true;
}
private boolean dfs(ArrayList[] graph, boolean[] visited, int course){
if(visited[course])
return false;
else
visited[course] = true;;
for(int i=0; i<graph[course].size();i++){
if(!dfs(graph,visited,(int)graph[course].get(i)))
return false;
}
visited[course] = false;
return true;
}
- 210. Course Schedule II, 16/Jul/24
Topics: #DFS , #BFS , #Graph , #TopologicalSort
could solve it bc 9. is same! But I struggle to fix error!
Note that
ArrayList<Integer>[] graph
notArrayList[] graph
Because For auto-converting theInteger
to theint
!.Don’t use generic type! Use specific type.
If you want to convert The Deque<Integer> or LinkedList<Integer>
to int[]
, you must convert that to new Integer[]
first.
I could solve it using BFS topological sort(Kahn’s algorithm). But for practice, I just solve DFS with white, gray, black set!
The main Idea is _while recursion, if meet same vertex(visiting it means cycle! _
gray : visiting[i]. white : visited[i] is false; black : visited[i] is true;
Oh… I didn’t need to use addFirst()
! just use order as a stack. and use just add
and pop()
for order!
int[] orderArray = new int[adjs.size()];
for (int i = 0; !order.isEmpty(); i++) orderArray[i] = order.pop();
public int[] findOrder(int numCourses, int[][] prerequisites) {
ArrayList<Integer>[] graph = new ArrayList[numCourses];
ArrayDeque<Integer> order = new ArrayDeque<>();
Boolean[] visited = new Boolean[numCourses];
Boolean[] visiting = new Boolean[numCourses];
Arrays.fill(visited, false);
Arrays.fill(visiting, false);
// build a directed graph
for (int i = 0; i < numCourses; i++) graph[i] = new ArrayList<>();
for (int[] course : prerequisites) {
int lecture = course[0];
int pre = course[1];
graph[pre].add(lecture);
}
for (int i = 0; i < numCourses; i++) {
if (visited[i] == false) {
if(!topSort(order, visited, visiting, i, graph)) return new int[0];
}
}
int[] ans = new int[numCourses];
Integer[] convert = order.toArray(new Integer[0]);
for (int i = 0; i < numCourses; i++) ans[i] = convert[i];
return ans;
}
private boolean topSort(ArrayDeque<Integer> order, Boolean[] visited, Boolean[] visiting, int course, ArrayList<Integer>[] graph) {
if (visiting[course]) return false;
visiting[course] = true;
for (int post : graph[course]) {
if (visited[post] == true) continue;
if (!topSort(order, visited, visiting, post, graph)) return false;
}
order.addFirst(course);
visited[course] = true;
return true;
}
I forgot reset the visiting
. but I works! Why? because if there is no cycle in graph and once vertex is visited(visiting) in recursion, then it must be visited!
- 909. Snakes and Ladders, 17/Jul/24 Topics : #Array , #BFS , #Matrix could solve it 1h 50mi… I took almost time to convert index of 2D(board[row][col]) to index of 1D(lable).
In BFS, If we want to find shortest path, at the first time we reach target, That must be minimum step(route). Oh and if there is a cycle… it can’t reach target!
board[0] 7 8 9 // left to right board[1] 6 5 4 // right to left board[2] 1 2 3 // left to right
I used ArrayDeque<int[]> q
, for Pair() position, moves), but others use just q.size()
for maintain moves
.
And the Most cool method is use another new ArrayDeque
! I will show you next to my code!
public int snakesAndLadders(int[][] board) {
ArrayDeque<int[]> q = new ArrayDeque<>();
int n = board.length;
int[] lable = new int[n * n + 1] ;
// To prevent a eternal loop. (find a cycle)
boolean[] visited = new boolean[n * n + 1];
Arrays.fill(visited, false);
// index = label, value = board[r][c]
// convert 2D to 1D array
int row = 0;
for (int i = n - 1; i >= 0; i--) {
int reverse = n - 1;
for (int j = 0; j < n; j++) {
if (row % 2 == 0) {
lable[n*n - (i*n+reverse)] = board[i][j];
reverse--;
}
else {
lable[n*n - (i*n+j)] = board[i][j];
}
}
row++;
}
// [curr, moves]
q.addLast(new int[] {1, 0});
visited[1] = true;
while(!q.isEmpty()) {
int[] move = q.removeFirst();
int curr = move[0];
int moves = move[1];
if (curr == n * n) return moves;
for (int i = curr + 1; i <= Math.min(curr + 6, n * n); i++) {
if (lable[i] != -1) {
if (visited[lable[i]]) continue;
q.addLast(new int[] {lable[i], moves + 1});
visited[lable[i]] = true;
}
else {
if (visited[i]) continue;
q.addLast(new int[] {i, moves + 1});
visited[i] = true;
}
}
}
return -1;
}
And I tried to convert index of 2D to index of 1D. But most of people just convert 1D(lable) to index of 2D like this!
The Main idea to convert 1D to 2D is row represented by /
and col represented by %
And the Main idea to convert 2D to 1D is row represented by *
and col represented by +
And if need to alternating(Reverse), just start n - (something)
Matrix is about representing indices effectively.
And the nextQ
way is so cool!
public int snakesAndLadders(int[][] board) {
// To store current lable(position)
ArrayDeque<Integer> q = new ArrayDeque<>();
int n = board.length;
// To prevent a eternal loop. (find a cycle)
HashSet<Integer> visited = new HashSet<>();
int moves = 0;
q.addLast(1);
visited.add(1);
while(!q.isEmpty()) {
ArrayDeque<Integer> nextQ = new ArrayDeque<>();
while(!q.isEmpty()) {
int curr = q.removeFirst();
if (curr == n * n) return moves;
for (int i = curr + 1; i <= Math.min(curr + 6, n*n); i++) {
int next = getAt(board, i);
if (next == -1) next = i;
if(visited.contains(next)) continue;
nextQ.addLast(next);
visited.add(next);
}
}
moves++;
q = nextQ;
}
return -1;
}
private int getAt(int[][] board, int curr) {
int n = board.length;
curr = curr - 1;
int row = (n - 1) - curr / n;
int col = (curr / n % 2 == 0) ? curr % n : (n - 1) - curr % n;
return board[row][col];
}
- 433. Minimum Genetic Mutation, 17/Jul/24 Topics : #HashTable , #String , #BFS could solve it 32mi bc I already know this is about BFS;;
The main idea is just add all possible next mutation to queue
. and if I visited(used it), then remove that mutation from possible
set.
class Solution {
public int minMutation(String startGene, String endGene, String[] bank) {
if (startGene.equals(endGene)) return -1;
HashSet<String> possible = new HashSet<>();
for (String gene : bank) possible.add(gene);
ArrayDeque<String> q = new ArrayDeque<>();
q.addLast(startGene);
possible.remove(startGene);
int mutate = 0;
while(!q.isEmpty()) {
for (int size = q.size(); size > 0; size--) {
String curr = q.removeFirst();
// while For loop using `possible`, cannot remove `possible` concurrently.
HashSet<String> temp = new HashSet<>(possible);
for (String gene : temp) {
if (isMutation(curr, gene)) {
if (gene.equals(endGene)) return mutate + 1;
q.addLast(gene);
possible.remove(gene);
}
}
}
mutate++;
}
return -1;
}
private boolean isMutation(String origin, String change) {
int cnt = 0;
char[] ori = origin.toCharArray();
char[] to = change.toCharArray();
for (int i = 0; i < ori.length; i++) {
if (ori[i] != to[i]) cnt++;
}
return (cnt == 1);
}
}
Actually My code doesn’t use the constraints that consist of only the characters ['A', 'C', 'G', 'T']
. Instead of that I use bank
and mutation is different with origin only one single character.
SO popular another way is to consider every possible change of origin.
Generate 4 x 8 mutations (possible characters x each place) And check if the bank contains that mutation. So if bank contains that, just remove that from bank set(can use another visited set and add that to visited).
public int minMutation(String start, String end, String[] bank) {
if(start.equals(end)) return 0;
Set<String> bankSet = new HashSet<>();
for(String b: bank) bankSet.add(b);
char[] charSet = new char[]{'A', 'C', 'G', 'T'};
int level = 0;
Set<String> visited = new HashSet<>();
Queue<String> queue = new LinkedList<>();
queue.offer(start);
visited.add(start);
while(!queue.isEmpty()) {
int size = queue.size();
while(size-- > 0) {
String curr = queue.poll();
if(curr.equals(end)) return level;
char[] currArray = curr.toCharArray();
for(int i = 0; i < currArray.length; i++) {
char old = currArray[i];
for(char c: charSet) {
currArray[i] = c;
String next = new String(currArray);
if(!visited.contains(next) && bankSet.contains(next)) {
visited.add(next);
queue.offer(next);
}
}
currArray[i] = old;
}
}
level++;
}
return -1;
}